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1.0  ABSTRACT

This paper focuses on viscous drag computations based on Reynolds-
averaged, Navier-Stokes (RANS) equations. Computations were performed on 
axisymmetric bodies of revolution at angles of attack ranging from 0 to 18 
degrees. Calculations were also performed on three surface ship hullforms. 
The results were compared with experimental data and were found to be in 
good agreement. 

A parametric study was performed on the sensitivity of the flow solutions 
to changing grid parameters. Minimum grid spacing, distance from the body to 
the outer grid boundary, and number of grid points were examined as parame-
ters. The results were equally as sensitive to the number of grid points as to the 
minimum spacing. Extending the location of the outer boundary had a lesser 
effect on the result. This investigation was based on a single flow solver, 
ISFLOW, and may not be directly applicable to other RANS codes.

2.0  INTRODUCTION

Applications of computational fluid dynamics (CFD) to the maritime 
industry continue to grow as this advanced technology takes advantage of the 
increasing speed of computers. Numerical approaches have evolved to a level 
of accuracy which allows them to be used during the design process to predict 
ship resistance. Significant progress has been made in predicting flow charac-
teristics around a given ship hull. Ship designers can use this information to 
improve a ship’s design. However, not much effort has been dedicated to deter-
mining viscous drag, an important element in the development of a new 
design.
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Prediction of drag on a ship hull is always a challenging task for a naval 
architect. At the start of the design process, hull forms are developed given cer-
tain requirements. One of the major design tasks is to estimate the powering 
performance so that propulsion requirements can be determined. Early esti-
mates of resistance and power are often based on simple empirical formulas 
derived from data for similar ships. As the design process proceeds, a more 
reliable approach becomes necessary to predict resistance; scale-model testing 
has been generally adopted for this purpose.

The accuracy of a prediction can be assessed by comparison with model-
scale experimental results. Full-scale ship resistance prediction is the final 
goal. Although CFD methods can be used to calculate full-scale ship resis-
tance, it is quite difficult to assess the accuracy of these results without a rea-
sonable database of full-scale resistance. Such a database is not currently 
available. 

It is beyond the text of this paper to consider full-scale calculations. The 
focus of the paper is to examine the effects of several uncertain/vague factors 
in CFD technology concerning grid generation: minimum grid spacing, grid 
distribution, and location of outer grid boundaries.

3.0  AXISYMMETRIC BODY OF REVOLUTION

3.1  Geometry

The first set of bodies studied was a systematic series of mathematically-
defined bodies of revolution. Axisymmetric bodies are ideal candidates for a 
parametric study with their easily defined geometry, straightforward grid gen-
eration, and available experimental data. 

Each body was defined by a sixth-degree polynomial [1]. Six axisymmet-
ric bodies were generated with length-to-diameter ratios (L/D) ranging from 
four to ten. All six bodies were evaluated at zero angle of attack. The two bod-
ies with a L/D of four and ten were also evaluated at angles of attack up to 18 
degrees. (See Table 1.)

TABLE 1.  Configurations examined for bodies of revolution.

L/D
Angle of attack

0° 2° 4° 6° 8° 12° 18°

4 • • • • • • •
5 •
6 •
7 •
8 •
10 • • • • • • •



3.2  Grid Parameters

A computational grid for each body was generated by a transfinite inter-
polation routine [2]. Three of the parameters characterizing a computational 
grid are total number of grid points, location of outer computational bound-
aries, and minimum spacing (initial spacing normal to body surface). Prior 
experience with RANS computations on similar geometry usually guides the 
determination of these parameters. The intent of this study is to qualify these 
parameters, as much as possible, and to begin to develop some guidance for 
their selection. 

The minimum spacing is generally based on y+, a dimensionless parame-
ter representing a local Reynold’s number in the near-wall region. This param-
eter is defined as

, (1)

where y = distance from wall surface,

u* =  frictional velocity,

= shear stress at the wall,

= density, and

= kinematic viscosity.

Using flat-plate boundary layer theory [3], this parameter can be derived as

, (2)

where L = body length, and
Re = Reynold’s number based on body length.

An estimate of the minimum grid spacing can be determined by setting 
y+ = 1 and solving for the value of  using equation (2). It should be noted 
here that the y+ value from equation (2) is based on a turbulent boundary layer 
on a flat plate. Therefore, it is used only as an estimate in cases where the 
geometry is not actually a flat plate. The actual value of y+ for the hullform is 
obtained with the viscous flow solution. Furthermore, the real y+ is not a con-
stant but varies over the wall surface according to the flow in the boundary 
layer. 

 For the L/D and angle of attack studies, a default set of grid parameters 
typical for an axisymmetric body was used. In the j-direction1 (normal to the 

1. In CFD analyses of marine vehicles, it is customary to use i, j, and k to describe the grid 
dimensions, where the i-direction is in the axial direction, j is normal to the body, and k is 
around the body’s girth.
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body), 61 points were used. The outer boundary was located one body-length 
from the body and two lengths aft. A schematic of this arrangement is shown in 
Figure 1. The minimum spacing was based on y+ = 1.

4.0   SURFACE SHIP HULLFORM

The second study examined surface ship hull-forms. The drag coefficient 
was computed for three ship hullforms. Generation of the geometry and grid 
were far more time consuming than for the bodies of revolution, due to the 
complex curvature of the shapes. 

The first hull was the HSVA tanker, shown in Figure 2, which has been 
used extensively for CFD validation of the viscous flow field [4]. Detailed 
measurements of the viscous flow velocity field were made in a wind tunnel. 
By eliminating the free surface effect, the viscous drag on the double model of 
the HSVA tanker was measured and published in Reference [5]. 

A multi-block, also known as multi-zonal, structured grid was generated 
around the HSVA tanker with H-type grid topology. The minimum spacing 
was based on a y+ of 1. Viscous flow calculations were performed to find the 
double body solution.

FIGURE 1. Schematic of grid structure around an axisymmetric body.

FIGURE 2. Geometry of the HSVA tanker.



The two other ship hulls are similar to each other in shape, and differ only 
that the second hull has an added a centerline skeg in the stern. Figure 3 shows 
the two hulls. The complex curvature of these two hulls leads to a more com-
plex grid topology than used for the HSVA tanker. The grid generation pack-
age GRIDGEN was used to generate the multi-block grids around the two 
hulls. A view of the grid structure around one of the hulls is shown in Figure 4. 
The minimum spacing was based on a y+ of 1. Again, the double body solution 
was calculated. 

5.0  MULTI-ZONAL FLOW SOLVER

A multi-zonal flow solver (ISFLOW) has been developed for computation 
of multi-block structured grids. The numerical algorithm adopted was based on 
a cell-centered, second-order central difference, finite volume formula for spa-
tial discretization with an explicit one-step Runge-Kutta time-stepping 
scheme. The three-dimensional Reynolds-averaged Navier-Stokes equations 
with pseudo-compressibility approach for incompressible viscous flow were 
written in tensor notation as follows:

a. Surface ship without a centerline skeg.

b. Surface ship with a centerline skeg.

FIGURE 3. Surface ship geometries, with and without a centerline skeg.



(3)

(4)

where t represents time, X represent the Cartesian coordinates, U the corre-
sponding velocity components, P the pressure, and τij the viscous stress tensor. 
The parameter 1/β represents the pseudo-compressibility. The fact that the 
transient-state solution obtained by equations (3) and (4) may not be physically 
valid was not relevant, since only the steady-state solution was of interest here. 
The goal is to choose a reasonable β value in order to reduce the disparity in 
propagating speeds during the transient state. Numerical experiments on 
choosing β indicate that β = 2 gives a good convergence rate.

A combination of finite volume discretization and the Runge-Kutta time-
stepping scheme was used to yield an effective method for solving equations  
(3) and (4) in arbitrary geometric domains. The domains are divided into quad-
rilateral cells. The discretization scheme decouples the approximation of the 
spatial and temporal terms in equations (3) and (4). In addition, the spatial 
terms are discretized in a finite-volume formulation. This is accomplished by 
defining the dependant variable at the center of a computational cell and evalu-
ating the flux at the midpoint of each cell surface using the central differencing 
technique. A fourth-difference artificial dissipation was included to damp high-

FIGURE 4. Grid structure around a surface ship.
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frequency oscillation and stabilize the computation. Since artificial dissipation 
is a purely numerical parameter, which does not appear in the analytic form of 
the equation, it must vanish as the discrete equations approach the analytic 
form of equations (a limitation of the mesh refinements). In addition, the terms 
must vanish if a natural dissipation mechanism, such as viscosity, is strong 
enough to stabilize the computation. To avoid the interference of artificial 
damping terms with the physical transport phenomena, a hyper-tangent distri-
bution of a weighting function for reducing the magnitude of the artificial dis-
sipation is used for computations inside the viscous layer. The use of such a 
dissipation model has proved to be successful in the calculation of turbulent 
vortex flow around the juncture of an airfoil attached to a flat plate [6].

The discretization procedure on spatial terms in equations (3) and (4) 
leads to a set of coupled ordinary differential equations, which has the form

(5)

where W is the vector of the flow variables and R(W) is the vector of the resid-
uals, consisting of the flux balance from the convective and diffusive terms, as 
well as the artificial dissipation terms. The time integration is performed by 
using an explicit one-step multi-stage scheme derived from a generalization of 
the Runge-Kutta formulation [7]. The multi-stage scheme of the Runge-Kutta 
method can be tailored to give the desired stability properties. The Courant-
Friedrichs-Lewy (CFL) number applies a conditional stability requirement on 
the time step for the numerical solution. It has been determined that the maxi-
mum stability bound on the CFL number for an m-stage scheme is (m-1) along 
the imaginary axis. The optimal choice of the scheme depends on a trade-off 
between the extent of the stability region needed and the cost of the integration 
of an extra stage. An implicit residual smoothing technique was implemented 
to relax the restriction on the time step imposed by the CFL condition. To 
accelerate the numerical solution to a steady-state, local time-stepping has also 
been adopted. The CFL number is increased from 3.0 to 4.5 when the 4-stage 
Runge-Kutta scheme is used with 2 evaluations of implicit residual smoothing. 
In addition, the algebraic turbulence model proposed by Baldwin and Lomax 
[8] for separated turbulent flows is used.

The multi-zonal capability in ISFLOW was designed specifically for the 
non-overlapping grid structure [9]. This multi-zonal approach allows the user 
to divide the whole flow field into a number of smaller regions. By defining 
these regions in a logical manner, the coding of the flow solver can be greatly 
simplified. In addition, a different set of governing equations and boundary 
conditions can be used independently within each zone. The grid distribution 
can also vary between zones, depending on the desired resolution. 

Compared to the single zone approach, the multi-zonal approach has 
played a significant role in computing the flow around complicated geometry. 
Besides the substantial advantage for grid generation, a significant saving in 
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computer memory and cpu time can be achieved. The treatment of the inter-
face boundary between neighboring zones is also important. Generally, the 
interior points of each zone are updated using the regular integration method 
similar to the single zone scheme. The interface boundary points are updated 
through the interpolation between interior points of neighboring zones. It is 
important to make the zonal boundary scheme conservative enough so that a 
distortion-free flow movement is achieved across the zonal interface.

6.0  RESULTS AND ANALYSIS

6.1  Axisymmetric Body of Revolution

6.1.1  Without Angle of Attack

The computed results for the six axisymmetric bodies are shown in 
Table 2. The total drag coefficient (CD) is composed of viscous pressure (Cvp), 
and frictional drag (Cf), which are obtained by integrating the pressure distri-
bution and viscous shear stress, respectively, over the body surface. The com-
puted results are in agreement with the experimental measurements. The 
calculations and experiments were performed for a Reynold’s number of 
2.0 x 107.

Several prediction methods have been investigated to calculate the drag 
for this series of bodies [10]. Table 3 provides a comparison of the current 
results with two methods in Reference [11], one based on a differential bound-
ary layer formulation (theory of Cebeci and Smith) and the other based on a 
simple drag formula by White [10]. Although not as close as the RANS predic-
tion, the two methods show good correlation with experimental data.

6.1.2  With Angle of Attack

The computed results for the two axisymmetric bodies at angles of attack 
are shown in Tables 4 and 5. The only experimental data available was the 
coefficient of force normal to the body axis (CN) in the y = 0 plane. Drag (CD), 
lift (CL), and normal force (CN) coefficients from ISFLOW were tabulated with 

TABLE 2. Computational versus experimental results for bodies of 
revolution at zero angle of attack.

L/D
ISFLOW results (x 10-3)

Experiment
 (x 10-3) % 

difference
Cvp Cf CD CD

4 0.746 2.467 3.213 3.208 0.2

5 0.431 2.517 2.948 2.988 1.3

6 0.354 2.504 2.858 2.848 0.4

7 0.257 2.504 2.761 2.758 0.1

8 0.199 2.492 2.691 2.718 1.0

10 0.132 2.497 2.629 2.703 2.7



experimental data. For the slender body (L/D = 10), the computed normal 
forces show reasonable correlation, within 5% to 8% of the experimental val-

ues.The fat body (L/D = 4) shows slightly better correlation at angles of attack 
up to 12 degrees, within 1% to 6% of the experiment. However, at 18 degrees 
the discrepancy is 13.5%.  

TABLE 3. Drag coefficients (CD x 10-3) from different prediction methods.

L/D
White’s 
formula

Boundary 
layer theory

ISFLOW Experiment

4 3.108 3.028 3.213 3.208

5 2.998 2.958 2.948 2.988

6 2.928 2.898 2.858 2.848

7 2.858 2.858 2.761 2.758

8 2.808 2.818 2.691 2.718

10 2.738 2.778 2.629 2.703

TABLE 4. Results for the slender body (L/D = 10) at angles of attack.

Angle 
of attack

ISFLOW results (x 10-3)
Experiment 

(x 10-3) % 
difference

CD CL CN CN

2 2.54 0.10 0.19 0.20 5.0

4 2.48 0.26 0.43 0.41 4.9

6 2.47 0.52 0.78 0.72 8.3

8 2.52 0.93 1.27 1.20 5.8

12 2.67 2.17 2.68 2.49 7.6

18 2.95 4.95 5.62 5.20 8.1

TABLE 5. Results for the fat body (L/D = 4) at angles of attack.

Angle 
of attack

ISFLOW results (x 10-3)
Experiment 

(x 10-3) % 
difference

CD CL CN CN

2 3.12 0.81 0.92 0.87 5.7

4 3.15 1.63 1.85 1.74 6.3

6 3.29 2.54 2.87 2.83 1.4

8 3.58 3.57 4.03 3.98 1.3

12 4.57 6.27 7.08 7.30 3.0

18 7.39 13.10 14.74 17.05 13.5



6.1.3  Effect of Grid Parameters

The results of varying the grid parameters for the slender body at zero 
angle of attack are shown in Table 6. Based on equation (1), the y+ values for 
the first, tenth, and twentieth cell off the body were also shown. Looking at the 
three y+(1) = 1 cases, 61 and 71 j-points were satisfactory, but there was a loss 
in accuracy going from 61 to 51 j-points. Similarly, for the three 61 j-cases, 
values for y+(1) of 1.0 and 0.5 were satisfactory, but 2.0 has a much larger 
error.

The results of varying the grid parameters for the fat body at 18 degrees 
angle of attack were shown in Table 7. Both increasing the number of j-points 
and extending the outer boundary make small improvements in the accuracy. 
The reduction of y+ has a much more significant effect in improving the accu-
racy of the results for these configurations. 

6.2  Surface Ship

The drag calculations for the three surface ship hullforms are compared 
with experimental data in Table 8. Both the experiment and computations for 
the HSVA tanker hullform were performed for a Reynold’s number of 
5.0 x 106. The computations and experiment for the other surface ships (with 

TABLE 6. Effects of varying grid parameters on the solution for the 
slender body (L/D = 10) at zero angle of attack.

No. of j-
points y+(1) y+(10) y+(20) Cvp Cf CD 

Exp. 
CD = 2.703

% diff

51

2.0 102.4 1168 0.130 2.279 2.409 10.9

1.0 98.0 1157 0.132 2.357 2.489 7.9

0.5 95.7 1152 0.132 2.400 2.532 6.3

61

2.0 66.0 581 0.132 2.404 2.536 6.2

1.0 61.5 572 0.132 2.497 2.629 2.7

0.5 59.2 567 0.134 2.538 2.672 1.1

71 1.0 42.8 337 0.135 2.540 2.675 1.0

TABLE 7. Effects of varying grid parameters on the solution for the fat 
body (L/D = 4) at 18° angle of attack.

Location of 
outer boundary

No. of j-
points y+(1) CN

Exp. 
CN = 17.05

% diff

1.25L 61 1.0 14.74 13.5

1.25L 71 1.0 14.96 12.3

1.875L 71 1.0 15.22 10.7

1.875L 71 0.5 15.88 6.9



and without the centerline skeg) were performed for a Reynold’s number of 
4.5 x 106. A good agreement was found for the HSVA tanker and ship without 
the centerline skeg. However, there was a large (6.9%) difference for the ship 
with the centerline skeg. Consequently, the flow solution around the ship with 
the skeg was more thoroughly examined. A vortex along the bilge (the transi-
tion between the bottom and side of the ship) showed rapid and unusual diffu-
sion near the ship stern. The grid spacing around the girth of the ship, 
especially at the bilge, is suspected to have been too large.

7.0  CONCLUSIONS

The lift and drag forces on both the axisymmetric bodies and the surface 
ships predicted by ISFLOW show good agreement with experimental results. 

For the axisymmetric bodies at zero angle of attack a minimum spacing 
based on y+ = 1, an outer boundary 1 body length away, and 61 j-points were 
sufficient to ensure good agreement with experiment. When increasing the 
number of grid points for a given value of y+, there appears to be a threshold 
up to which the accuracy increases rapidly, and beyond which there was little 
improvement. 

For examining both the slender and fat bodies at low angles of attack, 
these grid parameters seem to be on the threshold of accuracy. The fat body 
clearly requires a different set of grid parameters at high angles of attack. 

Overall, the results were equally as sensitive to the number of j-points as 
to the minimum spacing. Extending the location of the outer boundary beyond 
one body length has a lesser effect on the result.
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